A COMPLETE GUIDE TO

ASSESSMENT SETTING, RESPONSE AND SCORING

BY: KATO IVAN WUUNA

WUNNA EDUCATIONAL SERVICES LEARNERS' ASSESSMENT BOARD (WESLAB)

SCAN TO WATCH VIDEO LESSONS

FOR MORE LEARNING AND TEACHING MATERIALS, TAP ON THE WEBSITE LINK BELOW

ASSESSING LEARNERS

How teachers should assess learners according to the Lower Secondary Curriculum (LSC)?

1. Nature of Assessment in LSC

The LSC is **Competency-Based**. This means assessment is not only about recall of facts, but also about the ability to:

- Apply knowledge in real-life contexts.
- **Demonstrate skills** (practical, analytical, creative).
- **Show positive attitudes and values** (teamwork, responsibility, problem-solving).

Therefore, teachers must design assessment that checks what learners know, can do, and how they behave/relate.

2. Types of Assessment Teachers Should Use

a) Formative Assessment (Assessment for Learning)

- Done **continuously** during lessons.
- Helps teachers check learner progress and give feedback.
- Methods include:
 - Class exercises, oral questions, quizzes
 - o Projects, portfolios, group work
 - o Practical experiments, fieldwork, debates, role plays
- Aim: Guide learning and improvement, not just grading.

b) Summative Assessment (Assessment of Learning)

- Done at the end of a topic, term, or school year.
- Used for grading, placement, and certification.
- Includes end-of-term tests, UNEB exams, and final projects.

c) Assessment as Learning

- Learners assess themselves or peers.
- Teachers guide learners to reflect on their own strengths and weaknesses.

3. How Teachers Should Assess Learners

Step 1: Align with Competencies

- Identify the **competency** to be assessed (knowledge, skill, or value).
- Example: "Learner is able to apply Pythagoras' theorem to real-life situations."

Step 2: Use Clear Assessment Tasks

- Ask questions that reflect **real-life applications**.
- Example in Agriculture: "Design a plan for controlling soil erosion on a school farm."
- Example in Chemistry: "Explain how acids and bases are used in everyday life."

Step 3: Apply Different Methods

- Written tests for knowledge.
- Practical tasks for skills.
- Group discussions, debates, or projects for attitudes and values.

FOR MORE LEARNING AND TEACHING MATERIALS, TAP ON THE WEBSITE LINK BELOW

Step 4: Use Rubrics/Marking Guides

- Define what an **Outstanding**, **Good**, **Satisfactory**, or **Weak** answer looks like.
- Award marks for both process and product.
- Give credit for reasoning, not just final answers.

Step 5: Provide Feedback

- Written or oral comments should highlight:
 - What was done well
 - What needs improvement
 - How to improve

4. Example of Teacher Assessment

Task (Mathematics): A carpenter wants to make a rectangular table top of area 1.2 m^2 . If the length is 1.5 m, calculate the width.

Teacher's Assessment Approach:

- Competency: Ability to apply area formula in real-life context.
- Marking Guide:
 - Formula: Area = Length × Width (1 mark)
 - \circ Substitution: 1.2 = 1.5 × W (1 mark)
 - o Correct working: W = 0.8 m (1 mark)
 - o Final answer with unit: 0.8 m (1 mark)

Feedback: "Good work applying the formula. Next time, always include units in your final answer."

5. Performance Levels (LSC Standard Scoring)

Teachers classify learners' performance in **levels** rather than only raw marks:

- **Outstanding (80–100%)** → Excellent mastery, can apply in new situations.
- **Above Average (60–79%)** → Good mastery, minor errors.
- Average (40–59%) \rightarrow Fair mastery, struggles with application.
- Below Average (20–39%) → Minimal understanding.
- **Poor (0–19%)** \rightarrow Very weak, needs a lot of support.

Summary: How Teachers Should Assess Learners

- 1. Use formative, summative, and self/peer assessment.
- 2. Align all tasks with **competencies**.
- 3. Design real-life, learner-centered assessment items.
- 4. Apply clear rubrics and marking guides.
- 5. Score both process and product.
- 6. Give **constructive feedback** to support learner growth.
- 7. Report results in **performance levels** (not only marks).

SETTING CONTINUOUS ASSESSMENT (CA)

1. Understanding Continuous Assessment in NLSC

- Continuous Assessment (CA) is school-based assessment done throughout the learning process, not just at the end of the term or year.
- Its main purpose is to:
 - o Track learner progress.
 - o Identify strengths and weaknesses.
 - o Guide teaching and remediation.
 - o Contribute to the **final learner achievement grade** (UNEB now considers CA in certification).

2. Principles for Setting CA Items

When setting CA items, teachers should ensure they are:

- 1. **Competency-based** \rightarrow test what learners *know*, *can do, and value*.
- 2. **Varied in method** → not only written tests, but also projects, portfolios, experiments, fieldwork, debates, presentations.
- 3. **Relevant and contextualized** → items should be drawn from real-life situations learners can relate to.
- 4. **Continuous and systematic** → spread across the term, not given only once.
- 5. **Inclusive** → accommodate learners with different abilities and learning styles.
- 6. **Clear and transparent** → criteria/rubrics for scoring must be communicated to learners.

3. Steps in Setting CA Items

Step 1: Identify the Competency

- Pick a competency from the syllabus (knowledge, skill, or attitude).
- Example in Mathematics: "Learner can apply ratios to solve real-life problems."
- Example in Biology: "Learner can demonstrate an experiment to test for starch in leaves."

Step 2: Design the Task

- Ensure it requires learners to **demonstrate ability**, not just recall.
- Use **real-life context** where possible.
- Example:
 - o Math \rightarrow "A shopkeeper bought 50 kg of sugar and sold it at a profit of 20%. Calculate the selling price if the cost price was 5,000 shs. per kg."
 - o Agriculture → "Design a simple plan for controlling soil erosion on the school compound."

Step 3: Use Different Forms of Assessment Items

- Short written quizzes (knowledge check).
- Practical experiments or demonstrations (skills check).
- Projects and assignments (application/creativity).
- Portfolios (collection of learner's work over time).
- Peer/self-assessment tasks (values and reflection).

FOR MORE LEARNING AND TEACHING MATERIALS, TAP ON THE WEBSITE LINK BELOW

Step 4: Develop a Marking Guide or Rubric

- Break down the task into steps/criteria.
- Allocate marks fairly between process and product.
- Example rubric for an essay:
 - Accuracy of content → 3 marks
 - o Organization of ideas $\rightarrow 2$ marks
 - Language and clarity → 2 marks
 - o Real-life application → 3 marks

Step 5: Plan for Feedback

- After scoring, provide **constructive feedback** to learners:
 - What was done well
 - What needs improvement
 - How to improve

4. Example of a CA Item

Subject: Chemistry

Competency: Learner can investigate properties of acids and bases.

CA Task: In groups, design and carry out an experiment using local materials (like lemon juice, ash solution, soap) to test for acidic and basic substances. Record your observations and present a report.

Rubric:

- Clear aim stated $\rightarrow 2$ marks
- Correct procedure designed → 3 marks
- Accurate observations → 2 marks
- Logical conclusion → 2 marks
- Group cooperation and presentation $\rightarrow 1$ mark

Total: 10 marks

Summary: How Teachers Should Set CA Items

- 1. Base items on competencies in the curriculum.
- 2. **Use varied assessment methods** (tests, projects, practicals, debates, fieldwork).
- 3. **Contextualize tasks** to real-life situations.
- 4. Balance process and product when awarding marks.
- 5. **Provide clear rubrics/marking guides** for fairness.
- 6. **Give feedback** to help learners improve.

SCAN TO DOWNLOAD NOTES & ASSESSMENTS

SCAN TO WATCH VIDEO LESSONS

FOR MORE LEARNING AND TEACHING MATERIALS, TAP ON THE WEBSITE LINK BELOW

LEARNERS' ASSESSMENT RESPONSE

A general guide on how learners should respond to assessment items according to the Lower Secondary Curriculum (LSC).

1. Key Features of NLSC Assessment

The Ugandan New Lower Secondary Curriculum emphasizes **Competency-Based Assessment (CBA)**.

This means assessment items are designed to test:

- Knowledge and understanding (facts, concepts, principles).
- **Skills** (practical, analytical, creative, problem-solving).
- **Attitudes and values** (responsibility, teamwork, environmental awareness, ethical decision-making).

Learners are not expected to memorize and reproduce only, but to demonstrate what they can do with knowledge in real-life contexts.

2. Types of Assessment Items

- 1. **Knowledge-based items** recall, define, state, identify.
- 2. **Understanding items** explain, describe, give reasons.
- 3. **Application items** use knowledge in new or real-life situations.
- 4. **Practical/Performance tasks** experiments, projects, fieldwork, role plays.
- 5. **Higher-order tasks** analyze, compare, evaluate, design, innovate.

3. How a Learner Should Respond

a) Read and Understand the Question Carefully

- Underline/identify key words.
- Note **command words** (e.g., state, explain, calculate, analyze, justify, design).
- Check the **marks allocated** this shows the depth/detail expected.

b) Respond According to the Command Word

- State / List / Define \rightarrow Give precise facts or definitions.
- **Explain / Describe** → Give detailed reasoning or step-by-step description.
- Calculate / Solve \rightarrow Show working clearly, use correct formulas, and give final answer with units.
- \mathbf{Draw} / $\mathbf{Label} \rightarrow \mathbf{Neat}$, accurate diagrams with correct labels.
- **Analyze / Compare / Evaluate** → Break into parts, identify similarities/differences, give judgment with evidence.
- **Design / Suggest / Create** → Propose new ideas, plans, or solutions logically.

c) Demonstrate Practical Competence

- In experiments/projects: $\bar{\text{follow}}$ steps clearly (Aim \rightarrow Procedure \rightarrow Observations \rightarrow Conclusion).
- Record data in correct formats (tables, graphs, charts).
- Show creativity and responsibility in carrying out tasks.

FOR MORE LEARNING AND TEACHING MATERIALS, TAP ON THE WEBSITE LINK BELOW

d) Relate Answers to Real-Life Contexts

- Link school knowledge to environment, health, agriculture, technology, business, or community issues.
- Example: Instead of only saying "chlorination kills bacteria in water," also add "this makes drinking water safe in homes and schools."

e) Use Correct Language and Presentation

- Use subject-specific terminology (scientific, mathematical, historical, etc.).
- Be clear, concise, and organized avoid vague responses.
- Where necessary, present answers in **tables**, **graphs**, **bullet points**, **or steps** for clarity.

f) Check and Finalize Your Answer

- Re-read the question and your response.
- Confirm units, accuracy, spelling of terms, and completeness.
- Make sure your response matches the number of marks allocated.

4. Example Responses

Q1: State two benefits of crop rotation to farmers. (2 marks)

Good response:

- Prevents soil exhaustion.
- Reduces spread of pests and diseases.

Q2: Explain how plastics can cause environmental problems. (3 marks)

Good response:

- Plastics are non-biodegradable, so they accumulate in the environment.
- They block drainage systems, causing floods.
- When burnt, they release harmful gases that pollute the air.

Q3: Design an experiment to show that plants need sunlight for photosynthesis. (5 marks)

Good response:

- Place a potted plant in darkness for 48 hours to destarch it.
- Cover part of a leaf with black paper and expose the plant to sunlight for a few hours.
- Test the leaf for starch using iodine solution.
- Observation: only the uncovered part turns blue-black.
- Conclusion: sunlight is necessary for photosynthesis.

Summary: How Learners Should Respond

- 1. **Understand the question** \rightarrow identify what is being asked.
- 2. **Follow the command word** → adjust depth/detail accordingly.
- 3. Show working and reasoning clearly.
- 4. Use correct subject language and presentation.
- 5. Relate answers to real-life contexts.
- 6. Be neat, clear, and concise.

HOW A LEARNER SHOULD RESPOND TO PHYSICS ITEMS

Under the **Lower Secondary Curriculum (LSC)**, assessment is **competency-based**, and students are expected not only to recall facts but also to **apply knowledge**, **demonstrate skills**, and **exhibit attitudes** related to real-life situations. In Physics, this approach requires learners to actively **interpret questions**, **think critically**, and **communicate scientifically**.

Here's a **clear guide** on how a learner should respond to assessment items in Physics.

1. Understand the Type of Assessment Item

The new curriculum uses a variety of item types, including:

- Structured questions
- Scenario-based questions
- Practical/investigative tasks
- Problem-solving tasks
- Short and extended responses

Tip: Read the instructions carefully to understand what is required. Is it asking for explanation, description, application, or evaluation?

2. Read the Question Carefully and Identify Key Concepts

Before answering:

- Highlight/underline **keywords** (e.g. "explain," "describe," "calculate," "analyse").
- Identify the **topic area** (e.g. forces, energy, electricity).
- Understand the **context or scenario** if given (real-life applications are common in this curriculum).

Example:

"A student drops a ball from a certain height. Describe the energy changes that occur as it falls."

Here, you must identify:

- The scenario: a falling object
- The concept: energy transformation (potential \rightarrow kinetic)

3. Apply Knowledge to Real-Life or Practical Situations

- Avoid **rote memorization**; instead, demonstrate that you understand the **application** of concepts.
- When answering, relate the physics principle to the given **context or everyday experience**.

For example:

Question: Explain why a metal spoon feels colder than a wooden one at room temperature.

Answer: A metal spoon is a good conductor of heat, so it conducts heat away from your hand faster than a wooden spoon, making it feel colder.

FOR MORE LEARNING AND TEACHING MATERIALS, TAP ON THE WEBSITE LINK BELOW wunnaeducationalservices.com

4. Use Scientific Language and Units Appropriately

- Use correct **physics terminology** (e.g. force, velocity, mass, conduction).
- When calculations are involved:
 - Show all working steps
 - Use correct formulas
 - Always write the correct units

5. Structure Your Responses Clearly

- **Use bullet points or short paragraphs** if answering an extended response.
- Stick to the **point** and answer what is **specifically asked**.
- Avoid giving irrelevant information.

For "describe" or "explain" questions:

- **Describe:** State the features or steps clearly.
- **Explain:** Give reasons or causes.

7. Think Critically and Reflectively

- You may be asked to:
 - o Suggest improvements to an experiment.
 - Predict outcomes.
 - Justify your answer with reasoning.

For example:

What could be done to increase the accuracy of the experiment? Answer: Use a digital stopwatch instead of a manual one to reduce human error in time measurement.

8. Practice Self-Assessment and Peer Review

- Reflect on your answers:
 - o Did I answer all parts of the question?
 - o Did I use the correct scientific terms?
 - o Can someone else understand my explanation?

This aligns with the **learner-centered approach** promoted in the new curriculum.

Summary: Key Guidelines for Responding

Skill What to Do

Comprehension Understand question requirements

Application Relate physics to real life

Scientific Communication Use correct terms, units, and formats

Problem-solving Show steps, use correct formulas

Critical thinkingJustify, analyse, suggest improvementsPractical understandingInterpret tables, graphs, experiments

Reflection Evaluate and improve your own answers

FOR MORE LEARNING AND TEACHING MATERIALS, TAP ON THE WEBSITE LINK BELOW

HOW A LEARNER SHOULD RESPOND TO BIOLOGY ITEMS

The curriculum emphasizes the development of **practical skills**, **critical thinking**, **problem-solving**, **and application of knowledge** to real-life situations.

Below is a **clear explanation** of how a learner should respond to assessment items in Biology under this curriculum:

1 Understand the Type of Question (Competency-Based Focus)

Assessment items may include:

- Knowledge and Understanding Questions Require recall of facts.
- **Application Questions** Apply knowledge to new or real-life situations.
- **Inquiry and Problem-Solving Questions** Require investigation, analysis, and decision-making.
- **Practical-Based Questions** Test observation, experiment analysis, and data interpretation.

Tip: Carefully read the command words like *describe*, *explain*, *compare*, *suggest*, *evaluate*, etc. These indicate the depth of response expected.

2. Think Competency-Based, Not Just Theory-Based

Respond by **demonstrating competencies**, not just cramming content. Competencies include:

- Critical Thinking: Use logic and reasoning.
- **Communication**: Express ideas clearly and scientifically.
- **Problem-Solving**: Propose solutions to biological or health-related issues.
- **Practical Skills**: Describe or interpret experiments.

Example:

Question: Explain how poor sanitation can affect the spread of diseases in a community.

Wrong Approach (theory-only):

Poor sanitation causes diseases like cholera.

Right Approach (competency-based):

Poor sanitation provides breeding grounds for pathogens. For example, when waste is not properly disposed of, flies and water can carry bacteria like *Vibrio cholerae* to people, leading to disease outbreaks such as cholera.

3. Use Scientific Language and Practical Understanding

- When answering, use **correct biological terms**.
- Show understanding of **experiments** (aim, method, observation, conclusion).
- Relate your answers to **real-life Ugandan contexts** when possible.

Example:

Question: Describe how you would carry out an experiment to test for the presence of starch in a leaf.

Answer:

- Boil the leaf to kill it.
- Put it in alcohol to remove chlorophyll.
- Rinse in warm water to soften.
- Add iodine solution.
- If starch is present, it turns blue-black.

4. Interpret Diagrams and Data Carefully

Some questions involve interpreting:

- Graphs
- Tables
- Biological diagrams

When doing this:

- Read the **titles and labels** carefully.
- Look for trends or patterns.
- Use the data to support your answers.

5. Structure Answers Clearly

Always:

- Use clear, logical sentences.
- **Number points** if required.
- Avoid vague words like "it", "thing", "stuff".
- **Give examples** when asked.

Example:

Question: State two functions of the human skeleton.

Answer:

- 1. It supports the body and gives it shape.
- 2. It protects internal organs like the brain (protected by the skull).

6. Relate Biology to Life Skills and Environment

- Show awareness of how biology affects **daily life**: health, environment, agriculture.
- Use **examples from your community** where relevant.

Example:

Question: Suggest ways a community can conserve water during drought.

Answer:

Step

- Harvest rainwater using tanks.
- Reuse household water for watering plants.
- Educate people on turning off taps when not in use.

Summary: How a Learner Should Respond What to Do Why

1	Read and understand the question type	Know what is being tested
2	Apply knowledge, not just recall	Show understanding and real-life use
3	Use scientific terms and practical knowledge	Align with competency-based skills
4	Interpret and explain data clearly	Demonstrates analysis
5	Structure answers clearly	Easy to follow and mark
6	Relate answers to life and environment	Makes biology relevant

FOR MORE LEARNING AND TEACHING MATERIALS, TAP ON THE WEBSITE LINK BELOW

HOW A LEARNER SHOULD RESPOND TO MATHEMATICS ITEMS

1. Nature of Mathematics Assessment under LSC

The curriculum emphasizes **competency-based learning**, so assessment items are designed to test:

- **Knowledge & Understanding** (concepts, definitions, formulae).
- **Application** (using mathematics in everyday life).
- **Problem solving** (multi-step, real-life situations).
- Critical thinking & reasoning (justifying, proving, analyzing).

So, learners are expected to show **both working and reasoning**, not just final answers.

2. Types of Assessment Items in Mathematics

Learners will face:

- 1. **Recall/knowledge questions** state a formula, define a concept.
- 2. **Routine problems** solve an equation, simplify an expression.
- 3. **Applied problems** word problems in real-life contexts (e.g., business, physics, geography).
- 4. **Investigative/analytical tasks** explore patterns, justify a method, prove a property.
- 5. **Practical tasks** drawing graphs, constructing shapes, measuring.

3. How a Learner Should Respond

a) Read the Question Carefully

- Identify what is given and what is required.
- Underline key words (e.g., "hence," "show that," "correct to 2 decimal places").

b) Respond According to the Command Word

- **State / Write down** → Give the formula, definition, or final statement only.
- **Solve / Find / Calculate** → Show all steps: formula → substitution → working → answer with units (if any).
- **Draw / Construct** → Use mathematical instruments, label clearly, show construction lines if needed.
- **Prove / Show that** → Provide logical steps using known rules or theorems until the conclusion matches the requirement.
- **Estimate / Approximate** → Round values correctly and state the degree of accuracy.
- **Explain / Justify** → Support the answer with mathematical reasoning.

c) Show All Working Clearly

- Write step by step, vertically where possible.
- Do not skip major steps (marks are often awarded for method).

d) Use Appropriate Mathematical Language and Symbols

- Use correct notation:
- Avoid vague wording be precise.

e) Apply Mathematics to Real-life Contexts

When the question is about:

- **Business:** Show cost, profit, interest calculations clearly.
- **Measurement:** Show conversions (cm \leftrightarrow m \leftrightarrow km).
- Statistics: Draw neat graphs, tables with titles and correct scales.
- **Geometry/Trigonometry:** Use diagrams, label sides/angles.

f) Check and Present Final Answer Properly

- Simplify fractions/expressions.
- Give units (e.g., cm², shs., litres).
- Round off correctly (to required decimal places or significant figures).

Summary: How to Respond

- 1. **Understand the question** (what is given, what is required).
- 2. **Follow the command word** (state, solve, construct, prove).
- 3. Show clear working, not just answers.
- 4. Use correct mathematical notation and language.
- 5. Relate answers to real-life context when required.
- 6. Present final answers clearly, with units/accuracy.

HOW A LEARNER SHOULD RESPOND TO CHEMISTRY ITEMS

1. Read and Understand the Question Carefully

- Identify the **command word** (e.g., *explain*, *describe*, *calculate*, *design*, *investigate*).
- Break down the question to know what it is testing: knowledge, understanding, application, or higher-order skills.
- Connect the question to the **competency** being assessed (e.g., problem-solving, critical thinking, practical skills).

2. Respond According to the Level of the Item

Chemistry items in the new curriculum are set at different levels. Learners should respond appropriately:

(a) Knowledge & Understanding Items

- Example: State the electronic configuration of oxygen.
- Response: Give clear, accurate, and concise answers (e.g., $1s^2 2s^2 2p^4$).
- Use correct chemical symbols, formulae, and terms.

(b) Application Items

- Example: Explain why aluminium is used in making cooking utensils.
- Response: Link knowledge to real life: *Aluminium is a good conductor of heat, light in weight, resistant to corrosion, and relatively cheap.*

(c) Inquiry & Problem-Solving Items

- Example: Design an experiment to show that oxygen supports combustion.
- Response: Learner should:
 - 1. State the aim (e.g., To show that oxygen supports combustion).
 - 2. List apparatus/materials.
 - 3. Describe the procedure clearly.
 - 4. State expected observations.
 - 5. Give the conclusion.

FOR MORE LEARNING AND TEACHING MATERIALS, TAP ON THE WEBSITE LINK BELOW

(d) Practical/Investigative Items

- Example: A student was given dilute hydrochloric acid and zinc. Describe how he/she would prepare hydrogen gas and test it.
- Response: Learner should present stepwise answers, with clear experimental details, diagrams if required, observations, and conclusion.

(e) Activities of Integration (real-life problem-based items)

- Example: A farmer uses ammonium nitrate fertilizers. Discuss the benefits and dangers of using such fertilizers on the environment and people.
- Response: Learners must:
 - o Relate knowledge of Chemistry to daily life and society.
 - o Show **critical thinking** by weighing pros and cons.
 - o Use evidence-based reasoning.

3. Use the Correct Presentation Style

- Write in **complete sentences** (except where formulae/symbols are enough).
- Use **well-labeled diagrams** where necessary.
- Show working steps clearly in calculations (not just final answers).
- Use correct scientific language (avoid slang).

4. Demonstrate Competencies, Not Just Recall

A learner's response should demonstrate:

- Critical thinking (explaining reasons, not memorizing).
- **Problem-solving** (applying Chemistry to real-life situations).
- Communication skills (clear expression, correct symbols).
- **Practical skills** (describing or performing experiments).
- Values and attitudes (e.g., environmental awareness, safety, teamwork).

In summary:

A learner should respond to Chemistry items in the new curriculum by understanding the command word, giving accurate scientific responses, using application and problem-solving skills, presenting work neatly with correct symbols/diagrams, and demonstrating competencies beyond recall.

SCAN TO DOWNLOAD NOTES & ASSESSMENTS

SCAN TO WATCH VIDEO LESSONS

FOR MORE LEARNING AND TEACHING MATERIALS, TAP ON THE WEBSITE LINK BELOW

HOW TEACHERS SHOULD SCORE LEARNERS' ASSESSMENTS

1. Nature of Scoring in the LSC

Unlike the old curriculum that mainly emphasized **marks and grades**, the NLSC emphasizes **competency-based scoring**.

This means teachers must:

- Score knowledge, skills, and values (not just memory).
- Reward process as well as product.
- Use **rubrics/marking guides** with performance levels instead of only raw marks.

2. Key Principles of Scoring under LSC

- 1. **Criterion-referenced:** Learners are scored against set standards/competencies, not compared to each other.
- 2. **Holistic:** Marks reflect both cognitive (knowledge), psychomotor (skills), and affective (values/attitudes) aspects.
- 3. **Transparent:** Marking guides and rubrics must be clear to both teachers and learners.
- 4. **Feedback-oriented:** Scoring should guide improvement, not just allocate marks.

3. How Teachers Should Score

Step 1: Prepare a Marking Guide or Rubric

- Break down the question/task into expected steps or levels.
- Allocate marks/points for each correct step or demonstration of a skill.
- Define what quality work looks like at each performance level.

Step 2: Award Marks for Both Process and Product

- In written work: give marks for correct working even if the final answer is wrong.
- In practicals/projects: score planning, procedure, teamwork, creativity, and accuracy of results.

Step 3: Use Performance Levels

Convert scores into levels that show achievement. Common LSC levels are:

- **Outstanding (80–100%)** → Learner shows excellent mastery, creativity, and can apply in new contexts.
- **Above Average (60–79%)** → Good mastery, some minor errors.
- Average (40–59%) \rightarrow Basic understanding, struggles with application.
- Below Average (20–39%) → Minimal understanding, limited skills.
- **Poor (0–19%)** \rightarrow Very weak, little or no competency shown.

Step 4: Give Constructive Feedback

- Accompany scores with comments.
- Highlight strengths → "Good application of the formula."
- Suggest improvements → "Next time, show all working and include units."

FOR MORE LEARNING AND TEACHING MATERIALS, TAP ON THE WEBSITE LINK BELOW

Science Practical Task)

Q: Investigate the necessity of sunlight for photosynthesis. (5 marks)

Rubric:

- States aim clearly: 1 mark
- Describes procedure correctly: 2 marks
- Records observation correctly: 1 mark
- Gives conclusion: 1 mark

Performance Levels:

- Outstanding \rightarrow All steps correct and well explained (5/5).
- Average \rightarrow Some steps missing, but basic idea shown (2-3/5).
- Poor \rightarrow No clear procedure or observation (0-1/5).

Summary: How Teachers Should Score under LSC

- 1. Use clear scoring guides and rubrics aligned to competencies.
- 2. Award scores for both process and final product.
- 3. Score across knowledge, skills, and values.
- 4. Convert scores into **performance levels** (Outstanding \rightarrow Poor).
- 5. Provide **constructive feedback** to support learning.

HOW TO SET AND SCORE ACTIVITIES OF INTEGRATION (AoIs)

1. What Are Activities of Integration (AoIs)?

- In the LSC, **Activities of Integration** are tasks given at the **end of a** topic or sub-topic.
- They are designed to help learners bring together knowledge, skills, and values acquired and apply them in real-life situations.
- AoIs are part of **Continuous Assessment (CA)** and contribute to the **final learner achievement grade**.

So, AoIs are not just end-of-topic exercises, but **competency-based, real-life tasks** that show whether learning outcomes have been achieved.

2. Principles for Setting AoIs

When setting AoIs, teachers must ensure they are:

- 1. **Competency-based** testing what learners can *do*, not just what they *know*.
- 2. **Integrated** combining knowledge, skills, and values across subject content.
- 3. **Real-life oriented** tasks should reflect issues learners encounter in community, environment, technology, or daily life.
- 4. **Learner-centered** encourage creativity, problem-solving, and critical thinking.
- 5. **Inclusive** cater for learners of different abilities (allow group or individual work).

3. How Teachers Should Set AoIs

Step 1: Identify Competency Outcomes

- Choose what learners should demonstrate after completing the topic.
- Example in Geography: "Learner can use maps and statistical data to explain population distribution in Uganda."
- Example in Chemistry: "Learner can apply knowledge of neutralization in solving everyday problems."

Step 2: Design Real-Life Oriented Tasks

- Ensure questions/tasks require application of knowledge.
- Use real situations learners can relate to.

Examples:

- **Mathematics:** Design a budget for a school trip for 40 students given specific transport and meal costs.
- **Agriculture:** Develop a simple plan to control soil erosion in your school compound.
- **Biology:** Investigate how poor waste disposal affects health in your community and suggest solutions.

Step 3: Use Different Task Formats

- Group projects
- Practical experiments
- Investigations or surveys
- Problem-solving case studies
- Presentations, debates, role plays

4. How Teachers Should Score AoIs

a) Develop a Scoring Rubric

- Define clear criteria for performance.
- Break down expected outcomes into measurable aspects (process + product).

Example Rubric for a Project (out of 10 marks):

- Problem identification / Aim \rightarrow 2 marks
- Method/Procedure / Planning $\rightarrow 2$ marks
- Application of knowledge/skills → 3 marks
- Presentation / Clarity \rightarrow 2 marks
- Values (teamwork, creativity, responsibility) $\rightarrow 1$ mark

b) Reward Both Process and Product

- Marks should not only be for the final answer/report, but also for:
 - Planning
 - Organization
 - $_{\circ}$ Teamwork and participation
 - o Creativity and problem-solving approach

c) Use Performance Levels

Convert raw scores into achievement levels (as per NLSC standards):

- Outstanding (80–100%) \rightarrow Excellent mastery, creativity, and application.
- Above Average (60–79%) \rightarrow Good mastery, some minor gaps.
- Average (40–59%) \rightarrow Fair mastery, basic application shown.
- Below Average (20–39%) \rightarrow Limited demonstration of competency.
- **Poor (0–19%)** \rightarrow Very weak, little or no competency shown.

FOR MORE LEARNING AND TEACHING MATERIALS, TAP ON THE WEBSITE LINK BELOW

d) Give Constructive Feedback

Scoring should go hand in hand with guidance:

- Point out strengths ("Good link between soil erosion and rainfall patterns").
- Suggest improvements ("Next time, present findings with more statistical data").

5. Example of an AoI (Chemistry)

Topic: Acids, Bases and Salts

Activity of Integration:

Your community has acidic soil that affects crop yields. Using your knowledge of acids and bases, suggest and explain a method of improving soil fertility. Present your findings in a short report.

Rubric (10 marks):

- Problem identified clearly → 2 marks
- Application of neutralization knowledge \rightarrow 3 marks
- Practical solution proposed (use of lime, ash, etc.) \rightarrow 2 marks
- Clarity and organization of report → 2 marks
- Creativity / Responsibility → 1 mark

Summary: How Teachers Should Set and Score AoIs

- 1. Set tasks that integrate knowledge, skills, and values from the topic.
- 2. **Contextualize tasks** to real-life situations learners understand.
- 3. **Provide clear rubrics** for fairness and transparency.
- 4. **Score both process and product**, not just final answers.
- 5. Convert marks into performance levels (Outstanding \rightarrow Poor).
- 6. **Give feedback** to guide learners' improvement.

SCORING AND HANDLING CONTINUOUS ASSESSMENTS:

The **Curriculum (LSC)** is **competency-based**, so continuous assessment (CA) is no longer about testing memory only, but about tracking how learners acquire and demonstrate **knowledge**, **skills**, **values**, **and attitudes** over time. Here is a clear explanation of how teachers should **score and handle continuous assessments**:

1. Understand the Purpose of Continuous Assessment

- To **measure competencies** progressively, not just end-of-term exams.
- To capture practical skills, problem-solving, creativity, and attitudes.
- To provide **feedback** to learners and parents for improvement.
- To feed into the **final learner achievement record** (together with summative assessment).

FOR MORE LEARNING AND TEACHING MATERIALS, TAP ON THE WEBSITE LINK BELOW

2. Types of Continuous Assessment (CA) Activities

Teachers should set a variety of activities, not only written tests. These may include:

- Class exercises and quizzes.
- Practical experiments.
- Project work (individual or group).
- Research assignments.
- Fieldwork/community-based tasks.
- Oral presentations or debates.
- Portfolios (collection of learner's work).

This ensures that all competencies are assessed (knowledge, skills, values).

3. Scoring Continuous Assessments

Teachers should:

(a) Use Competency-Based Assessment Rubrics

- Instead of only marks, use **scoring guides** showing levels of achievement.
- For example, when marking a practical task:

Competency	Excellent (4)	Good (3)	Fair (2)	Poor (1)
Accuracy of procedure	Correct and systematic	Minor errors	Several errors	Incorrect
Recording/Presentation	Clear, neat, accurate	Few errors	Some missing details	Disorganized
Interpretation	Logical and evidence-based	Some logic	Weak reasoning	No reasoning

(b) Award Marks and Comments

- Convert rubric scores into **marks/percentages** where necessary.
- Always add written feedback (e.g., "Good attempt, improve on labeling diagrams").

(c) Consider Both Process and Product

• Score not just the final answer, but also **how the learner worked** (planning, teamwork, safety, creativity, reasoning).

4. Handling Continuous Assessment Records

Teachers should:

- 1. **Keep systematic records** for each learner (CA register/portfolio).
- 2. **Update regularly** after every assessment activity.
- 3. Use a **variety of activities** to balance strengths and weaknesses of learners.
- 4. **Give timely feedback** to learners and parents.
- 5. **Align records** with the National Assessment Framework (UNEB will use these records to complement summative exams).

5. Weighting and Reporting

 Continuous assessment usually contributes 20% to the final achievement, while summative contributes 80% (according to NCDC guidelines).

FOR MORE LEARNING AND TEACHING MATERIALS, TAP ON THE WEBSITE LINK BELOW

- Teachers should **aggregate scores** fairly across the term/year.
- Reports should show **performance per competency/learning outcome**, not just raw marks.
 - Example: Learner can design simple experiments, but needs to improve on interpretation of results.

6. Teacher's Professional Role

- Be fair, objective, and transparent in scoring.
- Avoid bias (gender, background, personality).
- Ensure activities are realistic, inclusive, and linked to everyday life.
- Guide learners on how to improve after each assessment.

In summary:

Teachers should score and handle continuous assessment in the new Ugandan lower secondary curriculum by:

- 1. Setting a variety of CA activities (not just tests).
- 2. Using **competency-based rubrics** to score knowledge, skills, and values.
- 3. Recording results systematically and giving feedback.
- 4. Considering both process and product in assessment.
- 5. Weighting CA fairly (20%) and aligning with national standards.
- 6. Using CA results for learner improvement, not punishment.

SCAN TO DOWNLOAD NOTES & ASSESSMENTS

SCAN TO WATCH VIDEO LESSONS

For more information contact us on: +256750463703/+256788463703

FOLLOW US

WUNNA EDUCATIONAL SERVICES

FOR MORE LEARNING AND TEACHING MATERIALS, TAP ON THE WEBSITE LINK BELOW